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Intelligent Recognition of Drill Wear States 
T.L Liu, W.Y. Chen, and E.J. Ko 

Both thrust force and vertical acceleration in the drilling process can be used as indirect indices to classify 
the drill wear conditions. In this work, these two indices are used as the input vector of the neural net- 
works; the neural network outputs are the wear states. 

Neural networks simulate the human brain and can learn from experience. They are adaptive and intel- 
ligent. The learning process of the neural networks used in this work was conducted using the back 
propagation technique. 

Different architectures of neural networks have been employed and compared. The results of using one 
kind of sensor and the results based on sensor fusion and neural networks are discussed and compared. 
The neural networks have very impressive performance and can achieve a success rate of 90% for on-line 
recognition of drill wear states. 
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1. Introduction 

ON-LINE recognition of tool wear is essential for the factory of 
the future (Ref 1, 2, 3). Researchers have developed on-line 
classification systems for drill wear to facilitate factory auto- 
mation, yet intelligence should be integrated into the current 
systems to further improve their performance. 

Researchers pointed out that the drill condition can be de- 
tected indirectly by measuring the thrust force (Ref 4, 5, 6). In 
addition, the drill wear can be sensed indirectly by measuring 
the acceleration (Ref 5, 7, 8). Sensor fusion was used to inte- 
grate both thrust and accelerations so that two kinds of signals 
could be used simultaneously to indicate the drill wear condi- 
tions (Ref 5). This system provides more information about 
drill wear conditions and is more reliable. 

Artificial neural networks were used to effectively process 
the information contained in the multiple sensory signals. Drill 
wear conditions were classified into different wear categories: 

I. Initial wear 
I1. Slight wear 
III. Moderate wear 
IV. Severe wear 
V. Worn-out 

In section 2, artificial neural networks are briefly described. 
In section 3, experimentation is illustrated in detail. The learn- 
ing process and on-line recognition of drill wear conditions is 
discussed in section 4. The on-line recognition scheme based 
on only one type of  sensor and the on-line system using sensor 
fusion as well as artificial neural networks are also discussed 
and compared in section 4. 
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2. Artificial Neural Networks 

Artificial neural networks simulate biological nervous sys- 
tems and are referred to as parallel distributed processing. Arti- 
ficial neural networks consist of a number of computational 
units known as neurons connected with a larger number of 
communicational links. These neurons have a pattern of con- 
nectivity among them, the knowledge of which can be repre- 
sented by the strength of the connections. The pattern of 
interconnections known as weights is not fixed. Instead, the 
weights can be modified based on the experience. Hence the 
system can learn from this experience and is intelligent (Ref 9, 
10, 11). 

Artificial neural networks can make decisions based on in- 
complete and noisy information. This system also can calculate 
its outputs very quickly. These features enable this technique to 
be used successfully in computer vision and process modeling 
(Ref 12, ! 3, 14). This technique is also a candidate for the rec- 
ognition of tool wear states. In recent years, artificial neural 
networks were applied to detect the tool wear in machining op- 
erations; the results are very encouraging (Ref 2, 15). In this pa- 
per, feedforward neural networks were used for on-line drill 
wear recognition. 

2.1 Feedforward Neural Networks 

Feedforward neural networks consist of the input layer, the 
output layer, and the hidden layers between them. The informa- 
tion contained in the input is recoded into an internal repre- 
sentation by the hidden units that perform the mapping from 
input to output. Each unit in this architecture can send its output 
to the units on the higher layer only and receive its input from 
the lower layer. Figure 1 shows a typical feedforward neural 
network that consists of three layers. Each node represents a 
nonlinear sigmoid function in the form of 

1 
O.= (Eq I) 

1 

I 1 + exp[-(  + 07] I 

where l j  = T. Wji  0 i 
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for nodes of  the output layer, and 

OUTPUT LAYER 
= oj  ( l  - o ?  Z kWkj (Eq 4) 

HIDDEN LAYER 

for all other nodes. 
In the above equations, the iladexes i, j ,  and k stand for the 

preceding, the current, and the next layers. The weights, Wji, 
and the thresholds, 0j, can be modified as: 

Wji (n + t ) = Wji(n) + 1"1 ~j 0 i (Eq 5) 

Fig. 1 Neural network structure 

INPUT LAYER 

In the above equations, lj is the input of the current node, Oj 
is the output of  the current node, 0 i is the output of  the node on 
the preceding layer, and 0j is the threshold of the current node. 
Obviously, all the node outputs range between 0 and i as indi- 
cated in Eq 1. Hence all the data should be normalized before 
being applied to the neural networks so that they are confined 
between 0.1 and 0.9. All the data, d, are normalized as d n ac- 
cording to: 

d n = [ (0.9 - 0.1 )/(dma x -  dmin) ] (d - dmi n) + 0.1 (Eq 2) 

In Eq 2, dmax and dminare the maximum and minimum values of 
the data, d, respectively. 

2.2 L e a r n i n g  Process  

The neural networks need to be trained in a learning process 
before they are applied for on-line classification of drill wear. 
The learning process starts by assigning random values to the 
weights, Wji, and thresholds, 0j. The output is obtained by a for- 
ward pass starting from the input vector. Each node calculates 
its output by summing its weighted inputs and using the sum- 
mation as the argument for a nonlinear function shown in Eq 1. 
The estimated output at the output layer is quite different from 
the desired output because the values of the weights and the 
thresholds are randomly assigned. In order to minimize the es- 
timation error, the back propagation technique is employed to 
adjust all the weights and thresholds. 

The back propagation technique uses the difference be- 
tween the desired output and the estimated value to adjust the 
weights and thresholds. The error e is propagated backwards 
using the generalized delta rule: 

5 o = eOo ( I - O o) (Eq 3) 

Oj(n+ I) = 0 j ( n )  + q  8 i (Eq 6) 

where rl is the learning rate and n is the current number of itera- 
tions. Obviously the weight and the threshold will be increased 
if the estimated value from the node is smaller than the desired 
output, and vice versa. 

The above procedure can be used to determine the error and 
then to adjust the weights and thresholds. This learning process 
can be carried out until the estimated output is sufficiently close 
to the desired output. After the weights and thresholds have 
been adjusted for one set of  training data, additional training 
sets can be used to further adjust all the weights and thresholds 
of the neural network. This learning process is finally termi- 
nated when the error becomes smaller than a predetermined er- 
ror limit. 

After the feedforward neural networks have been trained in 
the learning process, they can be used for other sets of operat- 
ing data. When new inputs are presented to the neural net- 
works, the output will be predictable. If the operating 
conditions are governed by the same underlying mechanism, 
the performance of the neural networks should be satisfactory. 

3. Experimentation 

The observations in Table 1 were made during drilling 
107.7-mm • 6.35-mm oil holes into nodular cast-iron crank- 
shafts using an optimum multifacet drill (MFD) as shown in the 
Appendix 1 (Ref 16). The spindle speed was 2100 rpm, and the 
feedrate was 0.178 mm/rev. 

The vertical acceleration during drilling was measured by a 
quartz accelerometer. The signals were amplified by a dual 
mode amplifier. The drilling thrust was measured by a strain 
gage dynamometer. The signals were amplified by a strain gage 
amplifier. Both signals were measured when the drilling depth 
reached 12.7 mm (0.5 in.). The signals were filtered by low pass 
filters with a cutoff frequency of 100 Hz. The signals were re- 
corded by a cassette data recorder and monitored by the oscil- 
loscope. The experimental setup is shown in Fig. 2, and the data 
for the training purpose are shown in Table 1. 
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Table I Percent increases of  the vertical acceleration and the thrust of  the training vectors 
Spindle speed: 2100 rpm. Feedrate: 0.178 mm/rev. 

Vertical acceleration 

Thrust 

Categoryl Category Il Categorylll CategorylV Category V 
Test measured measured measured measured measured 
No. (mv) % (my) % (my) % (my) % (mv) % 

1 142 100 180 127 185 130 210 148 226 159 
2 145 100 190 131 193 133 2t9 151 236 163 
3 133 100 157 118 161 121 180 135 197 148 
4 138 100 175 127 177 128 196 142 201 146 
1 265 100 281 106 286 108 313 118 363 137 
2 268 100 276 103 281 105 308 115 340 127 
3 251 100 291 116 299 119 344 137 374 149 
4 265 100 281 106 315 119 345 130 371 140 

Table 2 Percent increases o f  the vertical acceleration and the thrust for on-line tests 
Spindle speed: 2100 rpm. Feedrate: 0.178 mm/rev. 

Vertical acceleration 

Thrust 

Category I Category II Category II! Category IV Category V 
Test measured measured measured measured measured 
No. (mv) % (mv) % (mv) % (mv) % (mv) % 

1 143 100 160 112 167 117 199 139 203 142 
2 138 100 170 123 171 124 20I t46 207 150 
3 134 100 154 115 158 118 184 137 204 152 
4 128 100 170 133 175 137 186 145 191 149 
5 130 100 169 130 170 131 181 139 200 154 
6 132 100 164 124 168 127 191 145 205 155 
1 252 100 262 104 280 111 333 132 363 144 
2 257 100 278 108 393 114 324 126 347 135 
3 255 100 296 116 301 118 334 131 360 141 
4 249 100 266 107 291 117 299 120 356 143 
5 266 100 279 105 285 107 303 114 346 130 
6 263 100 289 110 292 111 345 131 352 134 

Addi t iona l  data  l isted in Table  2 were taken under  the s ame  
opera t ing  condi t ions .  These  data  were  used for on- l ine  tests for  
recogni t ion  of  drill  wear  states. 

The  f lank wear  area shown  in Tables  3 and 4 is an index of  
the dril l  wear.  A v i s ion  sys tem was  used to measure  the f lank  
wear  (Ref  5). 

4. On-Line Classification of Drill Wear Based on 
Artificial Neural Networks 

4.1 On-Line Recognition using Sensor Fusion and 
Artificial Neural Networks 

In o rder  to obse rve  the drill  wear  condi t ions  more  effec-  
tively, two k inds  o f  s ignals  were  used:  the vert ical  acce le ra t ion  
and the dri l l ing thrust .  To process  these  data so that  they are di- 
mens ion less ,  the pe rcen t  increases  of  the peak- to-peak  ampl i -  
tude o f  ver t ical  acce le ra t ion  and  the  dril l ing thrus t  were used,  
as s h o w n  in Tables  1 and  2 and Fig. 3 and 4. These  increases  
were no rma l i zed  acco rd ing  to Eq 2 and then used as two inputs  
on the  input  layer  o f  the  neura l  ne tworks .  

On  the output  layer  were  the  dril l  wear  condi t ions ,  wh ich  
were  classif ied,  b a s e d  on drill  wea r  area measu remen t s ,  in to  
f ive categories .  Ca tegory  I, init ial  wear, means  the  worn  area is 
under  270 n m  2. Ca tegory  II, s l ight  wear,  means  the  worn  area is 
be tween  270  n m  2 and  333 n m  2. Ca tegory  III, modera te  wear,  
means  the worn  area  is be tween  333 nm 2 and 474  nm 2. Cate-  
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RECORDER 
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Fig. 2 Experimental setup 

gory IV, severe  wear, means  the worn  area is be tween  474 nm 2 
and  658 n m  2. Category V, worn -ou t  condi t ion ,  means  the worn 
area is larger  than 658 n m  2. Aga in ,  the  drill  wear  c o n d i t i o n s  
were normal i zed  so that  they can  be  presen ted  to the  output  
layer  of  the  neural  ne tworks .  

A total  of  20 t ra in ing sets were  used in the lea rn ing  process.  
The  learn ing  rate used is 0.1, and  the er ror  l imit  used to stop the 
i tera t ions  in back propaga t ion  is under  0.01. F i f teen  different 
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Table 3 Progression of  the flank wear area of  the opt imum crankshaft MFD measured by the new vision system in the learn- 
ing process 
Spindle speed: 2100 rpm. Feedrate: 0.178 mm/rev 

Test No. _ . . . . . . . . .  Categoryl, nm z Categoryll, nm 2 Categorylll, nm 2 CategorylV, nm 2 Category V, nm z 

I 212.90 296.07 361.29 529.03 722.58 
2 251.61 303.45 419.35 600.00 819.35 
3 225.37 293.64 379.51 558.76 763.92 
4 210.45 288.17 362.49 528.33 714.21 

Table 4 Progression of  the flank wear area of  the opt imum crankshaft MFD measured by the new vision system for on-line 
tests 
Spindle speed: 2100 rpm. Feedrate: 0.178 mm/rev 

TestNo. Categoryl, nm 2 Categoryll, nm z Categorylll, nm 2 Category IV, rim z CategoryV, nm z 

l 238.61 301.28 404.23 584.51 800.00 
2 140.82 271.92 318.94 494.54 664.51 
3 229.96 290.54 386.76 565.31 774.19 
4 218.14 286.24 370.87 544.62 748.39 
5 168.81 284.93 347.69 526.12 696.77 
6 262.53 309.11 428.17 612.90 828.66 
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feedforward neural networks were trained in the learning proc- 
ess using the data shown in Tables 1 and 3 as input and output, 
respectively. 

After the learning process, the neural networks were used 
for on-line recognition of  the drill wear. The data shown in Ta- 
bles 2 and 4 were used for on-line tests; results are in Fig. 5 and 
Table 5. The rate of  success for on-line drill wear recognition 
ranges from 80.3% to 90%. Nine out o f  fifteen different neural 
network structures achieve a success rate of  90%. 

4.2 Justification of Sensor Fusion 

As shown in Fig. 3, the projections of  the data on both the 
horizontal and the vertical axis overlap. It is quite difficult to 
distinguish the wear states in the overlapping ranges if  only a 
single type of  sensor is used. Sensor fusion was used in this 
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Fig. 4 Data sets for on-line tests 

work because it can observe the drill conditions from different 
viewpoints and offer more information about the drill wear. 

Suppose only a single type of  sensor is employed, and the 
average values of  the maximum and the minimum of  two adja- 
cent categories shown in Table 1 are used as boundaries. For 
example, if  only percent increase in drilling thrust is used as a 
wear index, the maximum value in category III is 119% while 
the min imum value in category IV is 115%. The average of  
these two values, 117%, is used to be the boundary between 
these two categories. 

Using the above criteria for on-line classification, there are 
seven misclassifications out o f  thirty wear states if  only percent 
increase o f  peak-to-peak amplitude of  vertical acceleration is 
used, a 76.7% rate of  success. There are also seven misclassifi-  
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T a b l e  5 Ef fec t s  o f  n e u r a l  n e t w o r k  s t ruc ture  

Neural network structure Rate of success, % 

2x4• 1 90.0 
2x5• 86.6 
2x6• 1 90.0 
2x7x I 83.3 
2x8• 90.0 
2x9x 1 90.0 
2x 10x 1 90.0 
2x 11 x 1 90.0 
2x 12x I 86.6 
2 x l 3 x l  90.0 
2 x 14x 1 90.0 
2x 15x 1 86.6 
2 • 16 x 1 80.3 
2x 17x 1 90.0 
2 x 18 • 1 83.3 
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Fig. 6 Optimum crankshaft MFD 

Appendix 

cations if only thrust is used, a 76.7% rate of success. Obvi- 
ously, sensor fusion and neural networks can greatly enhance 
the reliability of the on-line drill monitoring system. 

5. Conclusions 

Based on the work presented in this paper, the reliability of 
an on-line drill wear recognition system can be greatly im- 
proved by using sensor fusion and artificial neural networks. 
The rate of  success for on-line drill wear recognition is only 
76.7% by using either only force sensor or only acceleration 
sensor. However, the performance of the intelligent drill wear 
recognition system using sensor fusion and neural networks is 
very impressive with a rate of success of up to 90%. 

An optimum crankshaft MFD was developed with an opti- 
mization program based on force models. This optimum MFD 
can drastically reduce the drilling thrust and increase the drill 
life in crankshaft drilling when compared to the conventional 
split point drill (Ref 16). The configuration of the optimum 
crankshaft MFD is shown in Fig. 6. 

The optimum crankshaft MFD has a split point with an addi- 
tional facet added to the outer comer  of the drill point. It has tri- 
ple point angles--2p,  201, 2P2,--and three cutting edges-- the  
inner cutting edge, BC; the middle cutting, AB; and the outer 
cutting edge, A t A. This MFD is used in drilling experiments of  
on-line drill wear recognition. 
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